3.193 \(\int \frac{(a+b x^4)^{7/4}}{c+d x^4} \, dx\)

Optimal. Leaf size=211 \[ -\frac{b^{3/4} (4 b c-7 a d) \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a+b x^4}}\right )}{8 d^2}-\frac{b^{3/4} (4 b c-7 a d) \tanh ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a+b x^4}}\right )}{8 d^2}+\frac{(b c-a d)^{7/4} \tan ^{-1}\left (\frac{x \sqrt [4]{b c-a d}}{\sqrt [4]{c} \sqrt [4]{a+b x^4}}\right )}{2 c^{3/4} d^2}+\frac{(b c-a d)^{7/4} \tanh ^{-1}\left (\frac{x \sqrt [4]{b c-a d}}{\sqrt [4]{c} \sqrt [4]{a+b x^4}}\right )}{2 c^{3/4} d^2}+\frac{b x \left (a+b x^4\right )^{3/4}}{4 d} \]

[Out]

(b*x*(a + b*x^4)^(3/4))/(4*d) - (b^(3/4)*(4*b*c - 7*a*d)*ArcTan[(b^(1/4)*x)/(a + b*x^4)^(1/4)])/(8*d^2) + ((b*
c - a*d)^(7/4)*ArcTan[((b*c - a*d)^(1/4)*x)/(c^(1/4)*(a + b*x^4)^(1/4))])/(2*c^(3/4)*d^2) - (b^(3/4)*(4*b*c -
7*a*d)*ArcTanh[(b^(1/4)*x)/(a + b*x^4)^(1/4)])/(8*d^2) + ((b*c - a*d)^(7/4)*ArcTanh[((b*c - a*d)^(1/4)*x)/(c^(
1/4)*(a + b*x^4)^(1/4))])/(2*c^(3/4)*d^2)

________________________________________________________________________________________

Rubi [A]  time = 0.224681, antiderivative size = 211, normalized size of antiderivative = 1., number of steps used = 10, number of rules used = 9, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.429, Rules used = {416, 530, 240, 212, 206, 203, 377, 208, 205} \[ -\frac{b^{3/4} (4 b c-7 a d) \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a+b x^4}}\right )}{8 d^2}-\frac{b^{3/4} (4 b c-7 a d) \tanh ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a+b x^4}}\right )}{8 d^2}+\frac{(b c-a d)^{7/4} \tan ^{-1}\left (\frac{x \sqrt [4]{b c-a d}}{\sqrt [4]{c} \sqrt [4]{a+b x^4}}\right )}{2 c^{3/4} d^2}+\frac{(b c-a d)^{7/4} \tanh ^{-1}\left (\frac{x \sqrt [4]{b c-a d}}{\sqrt [4]{c} \sqrt [4]{a+b x^4}}\right )}{2 c^{3/4} d^2}+\frac{b x \left (a+b x^4\right )^{3/4}}{4 d} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*x^4)^(7/4)/(c + d*x^4),x]

[Out]

(b*x*(a + b*x^4)^(3/4))/(4*d) - (b^(3/4)*(4*b*c - 7*a*d)*ArcTan[(b^(1/4)*x)/(a + b*x^4)^(1/4)])/(8*d^2) + ((b*
c - a*d)^(7/4)*ArcTan[((b*c - a*d)^(1/4)*x)/(c^(1/4)*(a + b*x^4)^(1/4))])/(2*c^(3/4)*d^2) - (b^(3/4)*(4*b*c -
7*a*d)*ArcTanh[(b^(1/4)*x)/(a + b*x^4)^(1/4)])/(8*d^2) + ((b*c - a*d)^(7/4)*ArcTanh[((b*c - a*d)^(1/4)*x)/(c^(
1/4)*(a + b*x^4)^(1/4))])/(2*c^(3/4)*d^2)

Rule 416

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(d*x*(a + b*x^n)^(p + 1)*(c
 + d*x^n)^(q - 1))/(b*(n*(p + q) + 1)), x] + Dist[1/(b*(n*(p + q) + 1)), Int[(a + b*x^n)^p*(c + d*x^n)^(q - 2)
*Simp[c*(b*c*(n*(p + q) + 1) - a*d) + d*(b*c*(n*(p + 2*q - 1) + 1) - a*d*(n*(q - 1) + 1))*x^n, x], x], x] /; F
reeQ[{a, b, c, d, n, p}, x] && NeQ[b*c - a*d, 0] && GtQ[q, 1] && NeQ[n*(p + q) + 1, 0] &&  !IGtQ[p, 1] && IntB
inomialQ[a, b, c, d, n, p, q, x]

Rule 530

Int[(((a_) + (b_.)*(x_)^(n_))^(p_)*((e_) + (f_.)*(x_)^(n_)))/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Dist[f/d,
Int[(a + b*x^n)^p, x], x] + Dist[(d*e - c*f)/d, Int[(a + b*x^n)^p/(c + d*x^n), x], x] /; FreeQ[{a, b, c, d, e,
 f, p, n}, x]

Rule 240

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[a^(p + 1/n), Subst[Int[1/(1 - b*x^n)^(p + 1/n + 1), x], x
, x/(a + b*x^n)^(1/n)], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[-1, p, 0] && NeQ[p, -2^(-1)] && IntegerQ[p
 + 1/n]

Rule 212

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b), 2]
]}, Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&
 !GtQ[a/b, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{\left (a+b x^4\right )^{7/4}}{c+d x^4} \, dx &=\frac{b x \left (a+b x^4\right )^{3/4}}{4 d}+\frac{\int \frac{-a (b c-4 a d)-b (4 b c-7 a d) x^4}{\sqrt [4]{a+b x^4} \left (c+d x^4\right )} \, dx}{4 d}\\ &=\frac{b x \left (a+b x^4\right )^{3/4}}{4 d}-\frac{(b (4 b c-7 a d)) \int \frac{1}{\sqrt [4]{a+b x^4}} \, dx}{4 d^2}+\frac{(b c-a d)^2 \int \frac{1}{\sqrt [4]{a+b x^4} \left (c+d x^4\right )} \, dx}{d^2}\\ &=\frac{b x \left (a+b x^4\right )^{3/4}}{4 d}-\frac{(b (4 b c-7 a d)) \operatorname{Subst}\left (\int \frac{1}{1-b x^4} \, dx,x,\frac{x}{\sqrt [4]{a+b x^4}}\right )}{4 d^2}+\frac{(b c-a d)^2 \operatorname{Subst}\left (\int \frac{1}{c-(b c-a d) x^4} \, dx,x,\frac{x}{\sqrt [4]{a+b x^4}}\right )}{d^2}\\ &=\frac{b x \left (a+b x^4\right )^{3/4}}{4 d}-\frac{(b (4 b c-7 a d)) \operatorname{Subst}\left (\int \frac{1}{1-\sqrt{b} x^2} \, dx,x,\frac{x}{\sqrt [4]{a+b x^4}}\right )}{8 d^2}-\frac{(b (4 b c-7 a d)) \operatorname{Subst}\left (\int \frac{1}{1+\sqrt{b} x^2} \, dx,x,\frac{x}{\sqrt [4]{a+b x^4}}\right )}{8 d^2}+\frac{(b c-a d)^2 \operatorname{Subst}\left (\int \frac{1}{\sqrt{c}-\sqrt{b c-a d} x^2} \, dx,x,\frac{x}{\sqrt [4]{a+b x^4}}\right )}{2 \sqrt{c} d^2}+\frac{(b c-a d)^2 \operatorname{Subst}\left (\int \frac{1}{\sqrt{c}+\sqrt{b c-a d} x^2} \, dx,x,\frac{x}{\sqrt [4]{a+b x^4}}\right )}{2 \sqrt{c} d^2}\\ &=\frac{b x \left (a+b x^4\right )^{3/4}}{4 d}-\frac{b^{3/4} (4 b c-7 a d) \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a+b x^4}}\right )}{8 d^2}+\frac{(b c-a d)^{7/4} \tan ^{-1}\left (\frac{\sqrt [4]{b c-a d} x}{\sqrt [4]{c} \sqrt [4]{a+b x^4}}\right )}{2 c^{3/4} d^2}-\frac{b^{3/4} (4 b c-7 a d) \tanh ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a+b x^4}}\right )}{8 d^2}+\frac{(b c-a d)^{7/4} \tanh ^{-1}\left (\frac{\sqrt [4]{b c-a d} x}{\sqrt [4]{c} \sqrt [4]{a+b x^4}}\right )}{2 c^{3/4} d^2}\\ \end{align*}

Mathematica [C]  time = 0.445039, size = 364, normalized size = 1.73 \[ \frac{5 \sqrt [4]{c} \left (4 a^2 d \sqrt [4]{a+b x^4} \log \left (\frac{x \sqrt [4]{b c-a d}}{\sqrt [4]{a x^4+b}}+\sqrt [4]{c}\right )+4 b^2 c^{3/4} x^5 \sqrt [4]{b c-a d}+4 a b c^{3/4} x \sqrt [4]{b c-a d}+a \sqrt [4]{a+b x^4} (b c-4 a d) \log \left (\sqrt [4]{c}-\frac{x \sqrt [4]{b c-a d}}{\sqrt [4]{a x^4+b}}\right )-a b c \sqrt [4]{a+b x^4} \log \left (\frac{x \sqrt [4]{b c-a d}}{\sqrt [4]{a x^4+b}}+\sqrt [4]{c}\right )+2 a \sqrt [4]{a+b x^4} (4 a d-b c) \tan ^{-1}\left (\frac{x \sqrt [4]{b c-a d}}{\sqrt [4]{c} \sqrt [4]{a x^4+b}}\right )\right )+4 b x^5 \sqrt [4]{\frac{b x^4}{a}+1} \sqrt [4]{b c-a d} (7 a d-4 b c) F_1\left (\frac{5}{4};\frac{1}{4},1;\frac{9}{4};-\frac{b x^4}{a},-\frac{d x^4}{c}\right )}{80 c d \sqrt [4]{a+b x^4} \sqrt [4]{b c-a d}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + b*x^4)^(7/4)/(c + d*x^4),x]

[Out]

(4*b*(b*c - a*d)^(1/4)*(-4*b*c + 7*a*d)*x^5*(1 + (b*x^4)/a)^(1/4)*AppellF1[5/4, 1/4, 1, 9/4, -((b*x^4)/a), -((
d*x^4)/c)] + 5*c^(1/4)*(4*a*b*c^(3/4)*(b*c - a*d)^(1/4)*x + 4*b^2*c^(3/4)*(b*c - a*d)^(1/4)*x^5 + 2*a*(-(b*c)
+ 4*a*d)*(a + b*x^4)^(1/4)*ArcTan[((b*c - a*d)^(1/4)*x)/(c^(1/4)*(b + a*x^4)^(1/4))] + a*(b*c - 4*a*d)*(a + b*
x^4)^(1/4)*Log[c^(1/4) - ((b*c - a*d)^(1/4)*x)/(b + a*x^4)^(1/4)] - a*b*c*(a + b*x^4)^(1/4)*Log[c^(1/4) + ((b*
c - a*d)^(1/4)*x)/(b + a*x^4)^(1/4)] + 4*a^2*d*(a + b*x^4)^(1/4)*Log[c^(1/4) + ((b*c - a*d)^(1/4)*x)/(b + a*x^
4)^(1/4)]))/(80*c*d*(b*c - a*d)^(1/4)*(a + b*x^4)^(1/4))

________________________________________________________________________________________

Maple [F]  time = 0.423, size = 0, normalized size = 0. \begin{align*} \int{\frac{1}{d{x}^{4}+c} \left ( b{x}^{4}+a \right ) ^{{\frac{7}{4}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^4+a)^(7/4)/(d*x^4+c),x)

[Out]

int((b*x^4+a)^(7/4)/(d*x^4+c),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b x^{4} + a\right )}^{\frac{7}{4}}}{d x^{4} + c}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^4+a)^(7/4)/(d*x^4+c),x, algorithm="maxima")

[Out]

integrate((b*x^4 + a)^(7/4)/(d*x^4 + c), x)

________________________________________________________________________________________

Fricas [B]  time = 16.5479, size = 5146, normalized size = 24.39 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^4+a)^(7/4)/(d*x^4+c),x, algorithm="fricas")

[Out]

1/16*(4*(b*x^4 + a)^(3/4)*b*x + 16*d*((b^7*c^7 - 7*a*b^6*c^6*d + 21*a^2*b^5*c^5*d^2 - 35*a^3*b^4*c^4*d^3 + 35*
a^4*b^3*c^3*d^4 - 21*a^5*b^2*c^2*d^5 + 7*a^6*b*c*d^6 - a^7*d^7)/(c^3*d^8))^(1/4)*arctan(-(c*d^2*x*sqrt(((b^7*c
^8*d^4 - 7*a*b^6*c^7*d^5 + 21*a^2*b^5*c^6*d^6 - 35*a^3*b^4*c^5*d^7 + 35*a^4*b^3*c^4*d^8 - 21*a^5*b^2*c^3*d^9 +
 7*a^6*b*c^2*d^10 - a^7*c*d^11)*x^2*sqrt((b^7*c^7 - 7*a*b^6*c^6*d + 21*a^2*b^5*c^5*d^2 - 35*a^3*b^4*c^4*d^3 +
35*a^4*b^3*c^3*d^4 - 21*a^5*b^2*c^2*d^5 + 7*a^6*b*c*d^6 - a^7*d^7)/(c^3*d^8)) + (b^10*c^10 - 10*a*b^9*c^9*d +
45*a^2*b^8*c^8*d^2 - 120*a^3*b^7*c^7*d^3 + 210*a^4*b^6*c^6*d^4 - 252*a^5*b^5*c^5*d^5 + 210*a^6*b^4*c^4*d^6 - 1
20*a^7*b^3*c^3*d^7 + 45*a^8*b^2*c^2*d^8 - 10*a^9*b*c*d^9 + a^10*d^10)*sqrt(b*x^4 + a))/x^2)*((b^7*c^7 - 7*a*b^
6*c^6*d + 21*a^2*b^5*c^5*d^2 - 35*a^3*b^4*c^4*d^3 + 35*a^4*b^3*c^3*d^4 - 21*a^5*b^2*c^2*d^5 + 7*a^6*b*c*d^6 -
a^7*d^7)/(c^3*d^8))^(1/4) + (b^5*c^6*d^2 - 5*a*b^4*c^5*d^3 + 10*a^2*b^3*c^4*d^4 - 10*a^3*b^2*c^3*d^5 + 5*a^4*b
*c^2*d^6 - a^5*c*d^7)*(b*x^4 + a)^(1/4)*((b^7*c^7 - 7*a*b^6*c^6*d + 21*a^2*b^5*c^5*d^2 - 35*a^3*b^4*c^4*d^3 +
35*a^4*b^3*c^3*d^4 - 21*a^5*b^2*c^2*d^5 + 7*a^6*b*c*d^6 - a^7*d^7)/(c^3*d^8))^(1/4))/((b^7*c^7 - 7*a*b^6*c^6*d
 + 21*a^2*b^5*c^5*d^2 - 35*a^3*b^4*c^4*d^3 + 35*a^4*b^3*c^3*d^4 - 21*a^5*b^2*c^2*d^5 + 7*a^6*b*c*d^6 - a^7*d^7
)*x)) + 4*d*((256*b^7*c^4 - 1792*a*b^6*c^3*d + 4704*a^2*b^5*c^2*d^2 - 5488*a^3*b^4*c*d^3 + 2401*a^4*b^3*d^4)/d
^8)^(1/4)*arctan((d^2*x*sqrt(((256*b^7*c^4*d^4 - 1792*a*b^6*c^3*d^5 + 4704*a^2*b^5*c^2*d^6 - 5488*a^3*b^4*c*d^
7 + 2401*a^4*b^3*d^8)*x^2*sqrt((256*b^7*c^4 - 1792*a*b^6*c^3*d + 4704*a^2*b^5*c^2*d^2 - 5488*a^3*b^4*c*d^3 + 2
401*a^4*b^3*d^4)/d^8) + (4096*b^10*c^6 - 43008*a*b^9*c^5*d + 188160*a^2*b^8*c^4*d^2 - 439040*a^3*b^7*c^3*d^3 +
 576240*a^4*b^6*c^2*d^4 - 403368*a^5*b^5*c*d^5 + 117649*a^6*b^4*d^6)*sqrt(b*x^4 + a))/x^2)*((256*b^7*c^4 - 179
2*a*b^6*c^3*d + 4704*a^2*b^5*c^2*d^2 - 5488*a^3*b^4*c*d^3 + 2401*a^4*b^3*d^4)/d^8)^(1/4) + (64*b^5*c^3*d^2 - 3
36*a*b^4*c^2*d^3 + 588*a^2*b^3*c*d^4 - 343*a^3*b^2*d^5)*(b*x^4 + a)^(1/4)*((256*b^7*c^4 - 1792*a*b^6*c^3*d + 4
704*a^2*b^5*c^2*d^2 - 5488*a^3*b^4*c*d^3 + 2401*a^4*b^3*d^4)/d^8)^(1/4))/((256*b^7*c^4 - 1792*a*b^6*c^3*d + 47
04*a^2*b^5*c^2*d^2 - 5488*a^3*b^4*c*d^3 + 2401*a^4*b^3*d^4)*x)) + 4*d*((b^7*c^7 - 7*a*b^6*c^6*d + 21*a^2*b^5*c
^5*d^2 - 35*a^3*b^4*c^4*d^3 + 35*a^4*b^3*c^3*d^4 - 21*a^5*b^2*c^2*d^5 + 7*a^6*b*c*d^6 - a^7*d^7)/(c^3*d^8))^(1
/4)*log(-(c^2*d^6*x*((b^7*c^7 - 7*a*b^6*c^6*d + 21*a^2*b^5*c^5*d^2 - 35*a^3*b^4*c^4*d^3 + 35*a^4*b^3*c^3*d^4 -
 21*a^5*b^2*c^2*d^5 + 7*a^6*b*c*d^6 - a^7*d^7)/(c^3*d^8))^(3/4) + (b^5*c^5 - 5*a*b^4*c^4*d + 10*a^2*b^3*c^3*d^
2 - 10*a^3*b^2*c^2*d^3 + 5*a^4*b*c*d^4 - a^5*d^5)*(b*x^4 + a)^(1/4))/x) - 4*d*((b^7*c^7 - 7*a*b^6*c^6*d + 21*a
^2*b^5*c^5*d^2 - 35*a^3*b^4*c^4*d^3 + 35*a^4*b^3*c^3*d^4 - 21*a^5*b^2*c^2*d^5 + 7*a^6*b*c*d^6 - a^7*d^7)/(c^3*
d^8))^(1/4)*log((c^2*d^6*x*((b^7*c^7 - 7*a*b^6*c^6*d + 21*a^2*b^5*c^5*d^2 - 35*a^3*b^4*c^4*d^3 + 35*a^4*b^3*c^
3*d^4 - 21*a^5*b^2*c^2*d^5 + 7*a^6*b*c*d^6 - a^7*d^7)/(c^3*d^8))^(3/4) - (b^5*c^5 - 5*a*b^4*c^4*d + 10*a^2*b^3
*c^3*d^2 - 10*a^3*b^2*c^2*d^3 + 5*a^4*b*c*d^4 - a^5*d^5)*(b*x^4 + a)^(1/4))/x) - d*((256*b^7*c^4 - 1792*a*b^6*
c^3*d + 4704*a^2*b^5*c^2*d^2 - 5488*a^3*b^4*c*d^3 + 2401*a^4*b^3*d^4)/d^8)^(1/4)*log(-(d^6*x*((256*b^7*c^4 - 1
792*a*b^6*c^3*d + 4704*a^2*b^5*c^2*d^2 - 5488*a^3*b^4*c*d^3 + 2401*a^4*b^3*d^4)/d^8)^(3/4) + (64*b^5*c^3 - 336
*a*b^4*c^2*d + 588*a^2*b^3*c*d^2 - 343*a^3*b^2*d^3)*(b*x^4 + a)^(1/4))/x) + d*((256*b^7*c^4 - 1792*a*b^6*c^3*d
 + 4704*a^2*b^5*c^2*d^2 - 5488*a^3*b^4*c*d^3 + 2401*a^4*b^3*d^4)/d^8)^(1/4)*log((d^6*x*((256*b^7*c^4 - 1792*a*
b^6*c^3*d + 4704*a^2*b^5*c^2*d^2 - 5488*a^3*b^4*c*d^3 + 2401*a^4*b^3*d^4)/d^8)^(3/4) - (64*b^5*c^3 - 336*a*b^4
*c^2*d + 588*a^2*b^3*c*d^2 - 343*a^3*b^2*d^3)*(b*x^4 + a)^(1/4))/x))/d

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (a + b x^{4}\right )^{\frac{7}{4}}}{c + d x^{4}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**4+a)**(7/4)/(d*x**4+c),x)

[Out]

Integral((a + b*x**4)**(7/4)/(c + d*x**4), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b x^{4} + a\right )}^{\frac{7}{4}}}{d x^{4} + c}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^4+a)^(7/4)/(d*x^4+c),x, algorithm="giac")

[Out]

integrate((b*x^4 + a)^(7/4)/(d*x^4 + c), x)